`
lc7cl
  • 浏览: 40710 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

多重继承及虚继承中对象内存的分布

    博客分类:
  • C++
 
阅读更多

 

http://www.tbdata.org/archives/878

这篇文章主要讲解G++编译器中虚继承的对象内存分布问题,从中也引出了dynamic_cast和static_cast本质区别、虚函数表的格式等一些大部分C++程序员都似是而非的概念。问题拿捏得十分到位,下面是我对原文的翻译,原文见这里(By Edsko de Vries, January 2006)。

本文是介绍C++的技术文章,假定读者对于C++有比较深入的认识,同时也需要一些汇编知识。

本文我们将阐释GCC编译器针对多重继承和虚拟继承下的对象内存布局。尽管在理想的使用环境中,一个C++程序员并不需要了解这些编译器内部实现细节,实际上,编译器针对多重继承(特别是虚拟继承)的各种实现细节对于我们编写C++代码都或多或少产生一些影响(比如downcasting pointer、pointers to pointers 以及虚基类构造函数的调用顺序)。如果你能明白多重继承是如何实现的,那么你自己就能够预见到这些影响,进而能够在你的代码中很好地应对它们。再者,如果你十分在意的代码的运行效率,正确地理解虚继承也是很有帮助的。最后嘛,这个hack的过程是很有趣的哦:)

多重继承

首先我们先来考虑一个很简单(non-virtual)的多重继承。看看下面这个C++类层次结构。

1 class Top
2 {
3      public:
4           int a;
5 };
6
7 class Left : public Top
8 {
9        public:
10           int b;
11 };
12
13 class Right : public Top
14 {
15       public:
16            int c;
17 };
18
19 class Bottom : public Left, public Right
20 {
21       public:
22            int d;
23 };
24
用UML表述如下:

注意到Top类实际上被继承了两次,(这种机制在Eiffel中被称作repeated inheritance),这就意味着在一个bottom对象中实际上有两个a属性(attributes,可以通过bottom.Left::a和 bottom.Right::a访问) 。

那么Left、Right、Bottom在内存中如何分布的呢?我们先来看看简单的Left和Right内存分布:

[Right 类的布局和Left是一样的,因此我这里就没再画图了。]

注意到上面类各自的第一个属性都是继承自Top类,这就意味着下面两个赋值语句:

1 Left* left = new Left();
2 Top* top = left;

left和top实际上是指向两个相同的地址,我们可以把Left对象当作一个Top对象(同样也可以把Right对象当Top对象来使用)。但是Botom对象呢?

GCC是这样处理的:

但是现在如果我们upcast 一个Bottom指针将会有什么结果?

1 Bottom* bottom = new Bottom();
2 Left* left = bottom;

这段代码运行正确。这是因为GCC选择的这种内存布局使得我们可以把Bottom对象当作Left对象,它们两者(Left部分)正好相同。但是,如果我们把Bottom对象指针upcast到Right对象呢?

1 Right* right = bottom;

如果我们要使这段代码正常工作的话,我们需要调整指针指向Bottom中相应的部分。

通过调整,我们可以用right指针访问Bottom对象,这时Bottom对象表现得就如Right对象。但是bottom和right指针指向了不同的内存地址。最后,我们考虑下:

1 Top* top = bottom;

恩,什么结果也没有,这条语句实际上是有歧义(ambiguous)的,编译器会报错: error: `Top’ is an ambiguous base of `Bottom’。其实这两种带有歧义的可能性可以用如下语句加以区分:

1 Top* topL = (Left*) bottom;
2 Top* topR = (Right*) bottom;

这两个赋值语句执行之后,topL和left指针将指向同一个地址,同样topR和right也将指向同一个地址。

虚拟继承

为了避免上述Top类的多次继承,我们必须虚拟继承类Top。

1 class Top
2 {
3         public:
4               int a;
5 };
6
7 class Left : virtual public Top
8 {
9         public:
10            int b;
11 };
12
13 class Right : virtual public Top
14 {
15      public:
16            int c;
17 };
18
19 class Bottom : public Left, public Right
20 {
21       public:
22            int d;
23 };
24

上述代码将产生如下的类层次图(其实这可能正好是你最开始想要的继承方式)。

对于程序员来说,这种类层次图显得更加简单和清晰,不过对于一个编译器来说,这就复杂得多了。我们再用Bottom的内存布局作为例子考虑,它可能是这样的:

这种内存布局的优势在于它的开头部分(Left部分)和Left的布局正好相同,我们可以很轻易地通过一个Left指针访问一个Bottom对象。不过,我们再来考虑考虑Right:

1 Right* right = bottom;

这里我们应该把什么地址赋值给right指针呢?理论上说,通过这个赋值语句,我们可以把这个right指针当作真正指向一个Right对象的指针(现在指向的是Bottom)来使用。但实际上这是不现实的!一个真正的Right对象内存布局和Bottom对象Right部分是完全不同的,所以其实我们不可能再把这个upcasted的bottom对象当作一个真正的right对象来使用了。而且,我们这种布局的设计不可能还有改进的余地了。这里我们先看看实际上内存是怎么分布的,然后再解释下为什么这么设计。

上图有两点值得大家注意。第一点就是类中成员分布顺序是完全不一样的(实际上可以说是正好相反)。第二点,类中增加了vptr指针,这些是被编译器在编译过程中插入到类中的(在设计类时如果使用了虚继承,虚函数都会产生相关vptr)。同时,在类的构造函数中会对相关指针做初始化,这些也是编译器完成的工作。Vptr指针指向了一个“virtual table”。在类中每个虚基类都会存在与之对应的一个vptr指针。为了给大家展示virtual table作用,考虑下如下代码。

1 Bottom* bottom = new Bottom();
2 Left* left = bottom;
3 int p = left->a;
第二条的赋值语句让left指针指向和bottom同样的起始地址(即它指向Bottom对象的“顶部”)。我们来考虑下第三条的赋值语句。下面是它汇编结果:

1 movl left, %eax # %eax = left
2 movl (%eax), %eax # %eax = left.vptr.Left
3 movl (%eax), %eax # %eax = virtual base offset
4 addl left, %eax # %eax = left + virtual base offset
5 movl (%eax), %eax # %eax = left.a
6 movl %eax, p # p = left.a

总结下,我们用left指针去索引(找到)virtual table,然后在virtual table中获取到虚基类的偏移(virtual base offset, vbase),然后在left指针上加上这个偏移量,这样我们就获取到了Bottom类中Top类的开始地址。从上图中,我们可以看到对于Left指针,它的virtual base offset是20,如果我们假设Bottom中每个成员都是4字节大小,那么Left指针加上20字节正好是成员a的地址。

我们同样可以用相同的方式访问Bottom中Right部分。

1 Bottom* bottom = new Bottom();
2 Right* right = bottom;
3 int p = right->a;

right指针就会指向在Bottom对象中相应的位置。

 

这里对于p的赋值语句最终会被编译成和上述left相同的方式访问a。唯一的不同是就是vptr,我们访问的vptr现在指向了virtual table另一个地址,我们得到的virtual base offset也变为12。我们画图总结下:

当然,关键点在于我们希望能够让访问一个真正单独的Right对象也如同访问一个经过upcasted(到Right对象)的Bottom对象一样。这里我们也在Right对象中引入vptrs。

OK,现在这样的设计终于让我们可以通过一个Right指针访问Bottom对象了。不过,需要提醒的是以上设计需要承担一个相当大的代价:我们需要引入虚函数表,对象底层也必须扩展以支持一个或多个虚函数指针,原来一个简单的成员访问现在需要通过虚函数表两次间接寻址(编译器优化可以在一定程度上减轻性能损失)。

Downcasting

如我们猜想,将一个指针从一个派生类到一个基类的转换(casting)会涉及到在指针上添加偏移量。可能有朋友猜想,downcasting一个指针仅仅减去一些偏移量就行了吧。实际上,非虚继承情况下确实是这样,但是,对于虚继承来说,又不得不引入其它的复杂问题。这里我们在上面的例子中添加一些继承关系:

1 class AnotherBottom : public Left, public Right
2 {
3       public:
4            int e;
5            int f;
6 };

这个继承关系如下图所示:

那么现在考虑如下代码

1 Bottom* bottom1 = new Bottom();
2 AnotherBottom* bottom2 = new AnotherBottom();
3 Top* top1 = bottom1;
4 Top* top2 = bottom2;
5 Left* left = static_cast(top1);
下面这图展示了Bottom和AnotherBottom的内存布局,同时也展示了各自top指针所指向的位置。

现在我们来考虑考虑从top1到left的static_cast,注意这里我们并不清楚对于top1指针指向的对象是Bottom还是AnotherBottom。这里是根本不能编译通过的!因为根本不能确认top1运行时需要调整的偏移量(对于Bottom是20,对于AnotherBottom是24)。所以编译器将会提出错误: error: cannot convert from base `Top’ to derived type `Left’ via virtual base `Top’。这里我们需要知道运行时信息,所以我们需要使用dynamic_cast:

1 Left* left = dynamic_cast(top1);

不过,编译器仍然会报错的 error: cannot dynamic_cast `top’ (of type `class Top*’) to type `class Left*’ (source type is not polymorphic)。关键问题在于使用dynamic_cast(和使用typeid一样)需要知道指针所指对象的运行时信息。但是,回头看看上面的结构图,我们就会发现top1指针所指的仅仅是一个整数成员a。编译器没有在Bottom类中包含针对top的vptr,它认为这完全没有必要。为了强制编译器在Bottom中包含top的vptr,我们可以在top类里面添加一个虚析构函数。

1 class Top
2 {
3        public:
4            virtual ~Top() {}
5            int a;
6 };

这就迫使编译器为Top类添加了一个vptr。下面来看看Bottom新的内存布局:

是的,其它派生类(Left、Right)都会添加一个vptr.top,编译器为dynamic_cast生成了一个库函数调用。

1 left = __dynamic_cast(top1, typeinfo_for_Top, typeinfo_for_Left, -1);

__dynamic_cast定义在libstdc++(对应的头文件是cxxabi.h),有了Top、Left和Bottom的类型信息,转换得以执行。其中,参数-1代表的是类Left和类Top之间的关系未明。如果想详细了解,请参看tinfo.cc的实现。

总结

最后,我们再聊聊一些相关内容。

二级指针

这里的问题初看摸不着头脑,但是细细想来有些问题还是显而易见的。这里我们考虑一个问题,还是以上节的Downcasting中的类继承结构图作为例子。

1 Bottom* b = new Bottom();
2 Right* r = b;

(在把b指针的值赋值给指针r时,b指针将加上8字节,这样r指针才指向Bottom对象中Right部分)。因此我们可以把Bottom*类型的值赋值给Right*对象。但是Bottom**和Right**两种类型的指针之间赋值呢?

1 Bottom** bb = &b;
2 Right** rr = bb;

编译器能通过这两条语句吗?实际上编译器会报错: error: invalid conversion from `Bottom**’ to `Right**’
为什么? 不妨反过来想想,如果能够将bb赋值给rr,如下图所示。所以这里bb和rr两个指针都指向了b,b和r都指向了Bottom对象的相应部分。那么现在考虑考虑如果给*rr赋值将会发生什么。

1 *rr = b;

注意*rr是Right*类型(一级)的指针,所以这个赋值是有效的!

这个就和我们上面给r指针赋值一样(*rr是一级的Right*类型指针,而r同样是一级Right*指针)。所以,编译器将采用相同的方式实现对*rr的赋值操作。实际上,我们又要调整b的值,加上8字节,然后赋值给*rr,但是现在**rr其实是指向b的!如下图

呃,如果我们通过rr访问Bottom对象,那么按照上图结构我们能够完成对Bottom对象的访问,但是如果是用b来访问Bottom对象呢,所有的对象引用实际上都偏移了8字节——明显是错误的!

总而言之,尽管*a和*b之间能依靠类继承关系相互转化,而**a和**b不能有这种推论。

虚基类的构造函数

编译器必须要保证所有的虚函数指针要被正确的初始化。特别是要保证类中所有虚基类的构造函数都要被调用,而且还只能调用一次。如果你写代码时自己不显示调用构造函数,编译器会自动插入一段构造函数调用代码。这将会导致一些奇怪的结果,同样考虑下上面的类继承结构图,不过要加入构造函数。

1 class Top
2 {
3      public:
4            Top() { a = -1; }
5            Top(int _a) { a = _a; }
6            int a;
7 };
8
9 class Left : public Top
10 {
11 public:
12            Left() { b = -2; }
13            Left(int _a, int _b) : Top(_a) { b = _b; }
14            int b;
15 };
16
17 class Right : public Top
18 {
19      public:
20            Right() { c = -3; }
21            Right(int _a, int _c) : Top(_a) { c = _c; }
22            int c;
23 };
24
25 class Bottom : public Left, public Right
26 {
27     public:
28            Bottom() { d = -4; }
29            Bottom(int _a, int _b, int _c, int _d) : Left(_a, _b), Right(_a, _c)
30            {
31                       d = _d;
32            }
33            int d;
34 };
35
先来考虑下不包含虚函数的情况,下面这段代码输出什么?

1 Bottom bottom(1,2,3,4);
2 printf(“%d %d %d %d %d\n”, bottom.Left::a, bottom.Right::a, bottom.b, bottom.c, bottom.d);
你可能猜想会有这样结果:

1 1 2 3 4
但是,如果我们考虑下包含虚函数的情况呢,如果我们从Top虚继承派生出子类,那么我们将得到如下结果:

-1 -1 2 3 4
如本节开头所讲,编译器在Bottom中插入了一个Top的默认构造函数,而且这个默认构造函数安排在其他的构造函数之前,当Left开始调用它的基类构造函数时,我们发现Top已经构造初始化好了,所以相应的构造函数不会被调用。如果跟踪构造函数,我们将会看到

Top::Top()
Left::Left(1,2)
Right::Right(1,3)
Bottom::Bottom(1,2,3,4)
为了避免这种情况,我们应该显示地调用虚基类的构造函数

1 Bottom(int _a, int _b, int _c, int _d): Top(_a), Left(_a,_b), Right(_a,_c)
2 {
3            d = _d;
4 }

到void* 的转换

1 dynamic_cast(b);

最后我们来考虑下把一个指针转换到void *。编译器会把指针调整到对象的开始地址。通过查vtable,这个应该是很容易实现。看看上面的vtable结构图,其中offset to top就是vptr到对象开始地址。另外因为要查阅vtable,所以需要使用dynamic_cast。

指针的比较

再以上面Bottom类继承关系为例讨论,下面这段代码会打印Equal吗?

1 Bottom* b = new Bottom();
2 Right* r = b;
3
4 if(r == b)
5      printf(“Equal!\n”);
先明确下这两个指针实际上是指向不同地址的,r指针实际上在b指针所指地址上偏移8字节,但是,这些C++内部细节不能告诉C++程序员,所以C++编译器在比较r和b时,会把r减去8字节,然后再来比较,所以打印出的值是”Equal”.

参考文献

[1] CodeSourcery, in particular the C++ ABI Summary, the Itanium C++ ABI (despite the name, this document is referenced in a platform-independent context; in particular, the structure of the vtables is detailed here). The libstdc++ implementation of dynamic casts, as well RTTI and name unmangling/demangling, is defined in tinfo.cc.

[2] The libstdc++ website, in particular the section on the C++ Standard Library API.

[3] C++: Under the Hood by Jan Gray.

[4] Chapter 9, “Multiple Inheritance” of Thinking in C++ (volume 2) by Bruce Eckel. The author has made this book available for download.

 

分享到:
评论

相关推荐

    (转)多重继承下的虚函数表

    这样,在有虚函数的类的实例中这个表被分配在了这个实例的内存中,所以,当我们用父类的指针来操作一个子类的时候,VFTable就显得尤为重要了,它就像一个地图一样,指明了实际所应该调用的函数。在C++的标准中提到,...

    C++ 对象的内存布局(上)1

    -) 对象的影响因素 简而言之,我们一个类可能会有如下的影响因素: 1)成员变量2)虚函数(产生虚函数表)3)单一继承(只继承于一个类)4)多重继承(继承多个类

    浅谈C++中派生类对象的内存布局

     2 多重继承  3 虚拟继承 1 单一继承 (1)派生类完全拥有基类的内存布局,并保证其完整性。 派生类可以看作是完整的基类的Object再加上派生类自己的Object。如果基类中没有虚成员函数,那么派生类与具有相同功能...

    开学了,有路网团购太便宜啦! C++编程惯用法(高级程序员常用方法和技巧)/深入C++系列(C++ Strategies and Tactics)

    接下来本书对单继承和多重继承进行了深入的探索。一开始书中会给出一个关于它们应该用在设计的什么地方的讨论,然后就是一些详细的示例代码,用来向我们演示如何在实践中使用这些概念。对于 mulu 代译者序 序 第0章 ...

    零起点学通C++多媒体范例教学代码

    14.3 数组在内存中的分布 14.4.输出数组名 14.5 数组名与函数 14.6 传递与接收 14.7 数组与函数 14.7.1 函数传参实例一——求数组所有元素的和 14.7.2 函数传参实例二——用递增法查找数据 14.7.3 函数传参实例三...

    零起点学通C++学习_多媒体范例教学代码

    14.3 数组在内存中的分布 14.4.输出数组名 14.5 数组名与函数 14.6 传递与接收 14.7 数组与函数 14.7.1 函数传参实例一——求数组所有元素的和 14.7.2 函数传参实例二——用递增法查找数据 14.7.3 函数传参...

    程序员面试宝典-第三版(高清带目录)

     11.3 虚函数继承和虚继承  11.4 多重继承  11.5 检测并修改不适合的继承  11.6 纯虚函数  11.7 运算符重载与RTTI  2章 位运算与嵌入式编程  12.1 位制转换  12.2 嵌入式编程  12.3 static 第3部分 数据...

    C++编程思想习题

    第16章 多重继承 16.1概述 16.2子对象重叠 16.3向上映射的二义性 16.4虚基类 16.4.1“最晚辈派生”类和虚基初始化 16.4.2使用缺省构造函数向虚基“警告” 16.5开销 16.6向上映射 16.7避免MI 16.8修复接口 16.9小结 ...

    C++ Primer第四版【中文高清扫描版】.pdf

    17.3 多重继承与虚继承 614 17.3.1 多重继承 615 17.3.2 转换与多个基类 617 17.3.3 多重继承派生类的复制控制 619 17.3.4 多重继承下的类作用域 620 17.3.5 虚继承 622 17.3.6 虚基类的声明 624 17.3.7 特殊的初始...

    C++ Primer中文版(第5版)李普曼 等著 pdf 1/3

     3.2.3 处理string对象中的字符 81  3.3 标准库类型vector 86  3.3.1 定义和初始化vector对象 87  3.3.2 向vector对象中添加元素 90  3.3.3 其他vector操作 91  3.4 迭代器介绍 95  3.4.1 使用迭代器 95  ...

    C++Primer(第5版 )中文版(美)李普曼等著.part2.rar

     3.2.3 处理string对象中的字符 81  3.3 标准库类型vector 86  3.3.1 定义和初始化vector对象 87  3.3.2 向vector对象中添加元素 90  3.3.3 其他vector操作 91  3.4 迭代器介绍 95  3.4.1 使用迭代器 95  ...

    超级有影响力霸气的Java面试题大全文档

    对象的一个新类可以从现有的类中派生,这个过程称为类继承。新类继承了原始类的特性,新类称为原始类的派生类(子类),而原始类称为新类的基类(父类)。派生类可以从它的基类那里继承方法和实例变量,并且类可以...

    中国大学MOOC西工大C++课程PPT

    第1讲 C++语言概述 第2讲 信息的表示与存储 第3讲 程序中数据的表示 第4讲 运算符与表达式 第5讲 顺序结构的程序设计 第6讲 选择结构的程序设计 第7讲 循环结构的程序...第36讲 多重继承 第37讲 多态性 第38讲 虚函数

    摩托罗拉C++面试题

    1.介绍一下STL,详细说明STL如何实现vector。 Answer: STL (标准模版库,Standard Template Library.它由容器算法迭代器组成。 STL有以下的一些优点: ...18,多重继承如何消除向上继承的二义性。 使用虚拟继承即可.

    C++大学教程,一本适合初学者的入门教材(part2)

    21.12 多重继承与virtual基类 21.13 结束语 小结 术语 自测练习 自测练习答案 练习 附录A 运算符的优先级与结台律 附录B ASCII字符集 附录C 数值系统 附录D 有关C++的Internet与Web资源 参考文献 【媒体评论】

    C++大学教程,一本适合初学者的入门教材(part1)

    21.12 多重继承与virtual基类 21.13 结束语 小结 术语 自测练习 自测练习答案 练习 附录A 运算符的优先级与结台律 附录B ASCII字符集 附录C 数值系统 附录D 有关C++的Internet与Web资源 参考文献 【媒体评论】

Global site tag (gtag.js) - Google Analytics